The breakthrough was presented by University of Florida and Texas Instruments engineers February 6 at the International Solid State Circuits Conference in San Francisco.
Ken O, a UF professor of electrical and computer engineering and the lead researcher on the project, said his team had demonstrated a 410 GHz circuit using CMOS technology.
Measured in a UF laboratory using a circuit equipped with an on-circuit antenna the size of a pen tip, 410 gigahertz eclipses the previous record for CMOS circuits set in February 2006 by 200 gigahertz. More important, it is about 60 gigahertz higher than the previous record set using alternative but more expensive indium phosphide technology. Texas Instruments’ advanced manufacturing technology, known as the 45-nanometer CMOS process, serves as the foundation for the new circuit.
“This is probably the first time in 30 years that a silicon-based circuit has been shown to have a higher operating frequency than one based on indium phosphide and similar compounds,” O said. “This is exciting because if you can build these circuits, then you can build inexpensive detection and imaging systems for a range of applications. The result could reduce the cost for these systems by a factor of 100 or more.”
These applications include, for example, always-on environmental monitoring equipment acutely sensitive to pollution, noxious gases or bioterrorism agents. In imaging, high-frequency circuits make possible techniques that can penetrate clothing to ”see” hidden weapons or plastic explosives. The circuit also can be used in medical equipment designed to facilitate early detection of skin and other cancers, and in industrial systems that monitor the coatings on pills to ensure they have the proper thickness and uniformity.
The circuit was demonstrated on Texas Instruments’ low-power 45-nanometer process technology. The process includes a number of techniques to deliver cost-effective multimillion transistor, system-on-circuit processors with the performance and lower power consumption required for processing advanced applications. While designed to extend battery life in portable products, the technology also offers the performance to handle advanced multimedia functionality in a tightly integrated design.
No comments:
Post a Comment